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Abstract—This paper investigates model updating
techniques in structural dynamics, specifically focusing
on the application of Finite Element Analysis (FEA) to
estimate noise, vibra- tion, and harshness (NVH) in electric
powertrains. The primary objective is to enhance the
accuracy of Finite Element models through the integration
of experimental modal analysis data obtained via impact
testing. To achieve this, a methodology is developed using
Python programming within the MARC/Mentat environment
to conduct sensitivity analyses on the FEA. This approach
enables the identification and prioritization of critical
simulation parameters essential for accurate frequency
and mode shape calculation. Additionally, an automated
optimiza- tion framework is developed to iteratively update
the simulation parameters, enhancing model fidelity. The
proposed methodology is validated through comprehensive
testing on various components and assemblies within electric
powertrains. Evaluation of the simulation optimizations
is performed using metrics such as Modal Assurance
Criterion (MAC) matrices and frequency error assessments.
The outcomes of this research contribute to advance the
effectiveness and reliability of Finite Element models for
NVH prediction in electric powertrain applications. The
developed methodologies provide a systematic approach to
integrate experimental data into simulation models, leading
to better predictions of noise, vibration, and harshness in
the design phase of various electric powertrains.

Index Terms—Model Updating, Impact Testing, Simulation
Optimization, Sensitivity Analysis, Electric Powertrain.

I. INTRODUCTION

The automotive market is rapidly evolving, with
a significant shift towards electric vehicles (EVs)
driven by environmental concerns and advancements in
technology. As this transition unfolds, it brings forth new
challenges, one of which revolves around understanding
and mitigating the noise, vibration, and harshness (NVH)
characteristics of electric powertrains.

In traditional internal combustion engine (ICE) vehicles,
noise generation predominantly stemmed from the
mechanical complexities of the engine, including moving
and unbalanced parts like the crankshaft. However, in
electric powertrains, the dynamics are notably different.
Here, the kinematics primarily consist of rotational
motion, with electric motors operating at significantly
higher rotational speeds than their ICE counterparts. As
a consequence, achieving perfect balance in components
such as the rotor and gear steps becomes imperative.
Even slight imbalances can introduce excitation forces
that propagate throughout the powertrain, resulting in
high-frequency noises, which are not only undesirable but
also potentially harmful to the overall driving experience
and customer perception.

In response to the growing demand for quieter
electric vehicles, automakers impose stringent noise level
requirements on electric powertrains. These requirements
necessitate accurate noise predictions early in the
development process, prompting the utilization of
advanced Computer-Aided Engineering (CAE) tools such
as SMT MASTA at automotive companies like GKN.

However, despite the sophistication of these simulation
tools, discrepancies between predicted and measured noise
levels persist, often attributed to uncertainties inherent in
the Finite Element (FE) models used. These uncertainties
primarily arise from challenges in accurately predicting
material properties and contact stiffness parameters
without physical prototypes.

This gap between simulation and reality underscores the
need for a systematic approach to enhance FE models
using experimental modal analysis. By incorporating
real-world data into the simulation process, it becomes
possible to refine model parameters and improve the
accuracy of noise predictions for electric powertrains.

Currently, the numerical modal analysis is updated by
hand, going through several iterations by changing the
simulation parameters. In the development phase, time is
usually short and going through these iterations takes a lot
of time. This process has a great potential for automation,
which would also come with a time saving.

Ultimately, the goal is to enhance the predictive
capabilities of FE models for existing electric powertrains,
enabling more accurate noise simulations, by bridging the
gap between simulation and reality.

II. STATE OF THE ART

A. Experimental Modal Analysis
Experimental Modal Analysis serves the crucial

purpose of identifying modal parameters, including
eigenfrequencies, damping ratios, and mode shapes for
various components. One widely utilized method, also
employed at GKN, involves impact testing. This method
entails exciting the structure through controlled hammer
impacts, while simultaneously measuring the input force
exerted by the hammer. The response of the structure is
captured using one or multiple accelerometers strategically
placed on the structure. In addition, the structure is
suspended with a rubber band or placed on a thick foam
plate whose stiffness is much lower than the stiffness of
the structure itself. This eliminates the influence of the
structure supporting the tested part.

Subsequently, the acquired data is transformed into a
frequency response function (FRF), which serves as the



foundation for calculating modal parameters. This process
typically involves employing various techniques such as
curve fitting or peak picking.

At GKN the state of the art software for the
experimental modal analysis is Simcenter Testlab. In
Simcenter Terstlab Impact Testing, the most common way
to estimate the modal parameter is to use the PolyMAX
add-on. PolyMAX is a modal curve-fitter that uses curve
fitting techniques to fit the measured FRF to a synthetic
one by adjusting the modal parameters. [1]

B. Numerical Modal Analysis

Finite Element Modal Analysis (FEMA) is a method of
approximating the eigenfrequencies and mode shapes of a
structure. These parameters are crucial for understanding
how a structure will respond to dynamic loads. The finite
element method (FEM) is a numerical technique that
approximates the behavior of physical systems, making it
possible to perform modal analysis on complex structures
that are difficult to analyse analytically.

Resonance occurs when the frequency of external forces
matches one of the natural frequencies of a structure,
leading to large amplitude vibrations. FEMA assists
in identifying these natural frequencies and designing
structures to avoid resonance.

The primary objective of the FEMA is to address a
generalized eigenvalue problem derived from the following
equations. To begin, we consider the general equation of
motion of a dynamic system. [2]

Mq̈(t) +Cq̇(t) +Kq(t) = 0 (1)

Where M is the mass matrix C is the damping matrix
and K is the stiffness matrix. First, damping is not
considered in modal analysis. In metal structures, damping
is usually very small, so it doesn’t affect eigenfrequencies
and mode shapes. Equation (1) is simplified to

Mq̈(t) +Kq(t) = 0. (2)

The response of the system q(t) under a specific initial
condition is assumed to be harmonic and is described by
this equation

q(t) = φeiωt. (3)

Where φ is the deformation pattern or mode shape and
ω is the corresponding natural frequency [2]. Taking the
second derivative of equation (3) and substituting it into
(2) gives the formulation of the generalized eigenvalue
problem,

Kφi = ω2
iMφi (4)

where i stands for the different modes. The generalized
eigenvalue problem can be transformed into a standard
eigenvalue problem, where the eigenvalues are the natural
frequencies squared and the eigenvectors are the mode
shapes. Hence, a Cholesky decomposition on the mass
matrix is needed:

M = SST . (5)

Inserted into equation (4) gives,

Kφi = ω2
iSS

Tφi. (6)

Next, both sides of the equation are multiplied by S−1

and S−TST is inserted on the left side. As a result, the
formulation for the standard eigenvalue problem,

K̃φ̃i = ω2
i φ̃i, (7)

is created. With

φ̃i = STφi, (8)

and

K̃ = S−1KS−T , (9)

[3]
This transformation allows the generalized eigenvalue

problem to be converted into a standard eigenvalue
problem, which can then be solved using the iterative
algorithm Lanczos. This algorithm is also employed in
Marc/Mentat.

In this paper, the reason for using FEMA is to
adjust the stiffness of the FE models by looking at the
eigenfrequencies. The previous chapter described how the
eigenfrequencies are determined experimentally. With this
knowledge, the stiffness of the FE model, represented
by the stiffness matrix K, can be adjusted so that the
experiment matches the simulation. At GKN ePowertrain,
the FE solver software used is Marc/Mentat.

C. Modal Assurance Criterion
Section II-B describes numerical modal analysis, while

II-A describes experimental modal analysis, now an
interface between the two worlds is needed. It is not
always easy to match the eigenfrequencies found in the
experiment with those found in the simulation. It is also
possible that the frequencies calculated in the simulation
are not found in the experiment. In most cases, the
mode shapes are used to pair the eigenfrequencies of
the simulation with those of the experiment. For simple
components, this is often done intuitively by simply
looking at the mode shapes of the simulation and trying
to find similarities in the mode shapes of the experiment.
However, a better way to pair the eigenfrequencies is
to calculate the Modal Assurance Criterion (MAC). The
MAC matrix helps pair the simulation and experiments
by comparing the mode shapes and giving an indication
of how similar they are. The formula for this is given by
the equation 10. [4]

MAC(i, j) =
(φT

EMA,j · φFE,i)
2

(φT
EMA,j · φEMA,j)(φT

FE,i · φFE,i)
(10)

The result of this equation is the MAC matrix. Values
close to 1 indicate a high similarity between the mode
shapes, while a value close to 0 indicates the opposite.



D. Model Updating

Now that the mode shapes of the EMA and the
numerical modal analysis can be paired by the MAC,
the next step is to adjust the numerical modal analysis
so that the eigenfrequencies match the ones from the
EMA. This process is called model updating. The current
approach to model updating is manual. The parameters
of the numerical modal analysis are adjusted through
several iterations by hand until the eigenfrequencies match
those of the experiment. The process is shown in the
figure 1. Doing this type of process manually is very
time-consuming, and it becomes even more difficult when
the number of uncertain parameters and eigenfrequencies
is large. In addition, one can never be sure that the optimal
parameters have been chosen.

Fig. 1. Flow chart of the manual update process.

E. Sensitivity Analysis

It is not always easy to decide which parameters
to change in the model updating process. Not every
parameter has the same effect on the eigenfrequencies,
and often different parameters influence different
eigenfrequencies of the numerical modal analysis. When
the number of uncertain parameters is large, it is difficult
to get an overview of the importance of each parameter,
so a systematic approach is needed to find the critical
parameters. This is where sensitivity analysis comes in.

There are many ways to perform a sensitivity analysis.
But in each case, some samples of the simulation are
needed. This means that the numerical modal analysis
should be calculated with different combinations of
uncertain parameters. Since numerical modal analysis
often requires a lot of computation, it is important to
generate as few samples as possible, but still enough
to get reasonable results. There are several approaches
to generate such a set of parameters that gets the most
information out of as few samples as possible. One of the
most popular is Latin Hypercube Sampling (LHS). [5]

Now that the parameter samples are defined, the
corresponding simulation eigenfrequencies can be
calculated and stored for each sample. To get an estimate
of how much a parameter correlates with a particular
eigenfrequency, the Pearson correlation coefficient is
calculated. The Pearson correlation coefficient is a good
indicator of the linear relationship between two data
vectors. Suppose the vector x represents the samples of
a parameter and y is the corresponding result vector of

an eigenfrequency. The Pearson correlation coefficient
between these two parameters can be calculated according
to the equation 11, where mx and my are the mean
values of x and y. [6]

r =

∑
(x−mx)(y −my)√∑

(x−mx)2
∑

(y −my)2
(11)

A Pearson correlation coefficient close to 1 or -1
indicates a good correlation, while a value close to zero
indicates a poor correlation.

F. Optimization Algorithm and Target Function

To create an automated optimization process a target
function that describes the error of the optimization
process is needed. The success of the result of a manual
or automated optimization process is commonly described
by the target function 12.

F =

n∑
i=1

(
fi,EMA − fi,FE

fi,EMA

)2

(12)

takes the eigenfrequency i of the EMA and subtracts
from it the corresponding numerically calculated
eigenfrequency i, resulting in the frequency error.
Additionally, the result is divided by the physical
eigenfrequency to get the relative error, since the
frequency error is always calculated in % and not in
Hz. The relative error is then squared to make sure the
result is positive and to give more weight to a large error.
Finally, the errors of all modes are summed up to get a
single value for the objective function F , which can then
be minimized.

There are several minimization algorithms that can
be used for a global, nonlinear, constraint minimization
problem. [7] uses Bayesian Optimization (BO) to
minimize an expensive objective function that solves an FE
model for each evaluation. BO is a machine learning based
global optimization technique that uses as few iterations
as possible to find the minimum. BO uses samples to
train a Gaussian process (GP) to approximate the objective
function. The samples for this could be, for example, Latin
hyper cube samples. The Gaussian process approximates
the objective function using a probabilistic model. [7]

G. Linear Regression

Often the objective function is time-consuming to
evaluate because of the need to solve a numerical modal
analysis at each iteration. For larger problems, this can
mean that the optimization process can take several days.
The idea of this section is to speed up the optimization
by creating a surrogate model of the finite element model
that can reproduce the same results but much faster. This
would reduce the optimization time to a few seconds. The
first step in optimizing a simulation is always to perform
a sensitivity analysis, which requires samples. The same
samples can be used to train the surrogate model, for
example by using linear regression. The trained model can
then be used to predict the eigenfrequencies in no time.



III. OBJECTIVES

The primary objective of this paper is to develop
a methodology for updating the finite element modal
analysis of various components and sub-assemblies of
electric powertrains using data acquired from experimental
modal analysis. This methodology will encompass the
development of a structured workflow for automatic
simulation updates based on experimental data inputs
within Marc/Mentat. One goal is to automate the direct
optimization approach by solving the simulation in
every iteration. Furthermore, a systematic approach to
perform an optimization with a trained surrogate model
is developed. To know how to set up the optimization a
method to perform sensitivity analysis within Marc Mentat
is created. The effectiveness of the proposed methodology
will be evaluated through extensive testing on various
components.

IV. CONCEPT

A. Equipment and Software for the EMA

The hammer used for Impact Testing is the PCB
086C03. PCB says that the applications for this hammer
are medium structures such as car frames, and small
electric motors.

The hammer can be equipped with different tips to
excite different frequency ranges on the structure. It is
possible to set up the hammer with a hard, medium, soft
or very soft tip. At GKN ePowertrain, the frequencies of
interest are between 0 Hz and 5000 Hz, so the hard tip is
used most of the time. [8]

The accelerometers used are also from PCB and are of
type 356A43. The frequency range is from 0Hz to 7000Hz
with an accuracy of 5%, which is sufficient as it is larger
than the frequency range of interest. With an accuracy of
10 % the accepted frequency range is up to 10 kHz. The
acceleration range of the sensor is ± 500 g. [9]

The data acquisition system (DAQ) used is the Siemens
SCADAS Mobile 01. Equipped with the V24 card, the
DAQ can handle up to 24 channels at 24-bit resolution
and a sampling frequency of 51, 6 kHz.[10]

The software used at GKN for the experiments,
measurements and data processing is ”Simcenter Testlab
Impact Testing”. The software automatically connects to
the DAQ system and there is the possibility to include
different add-ins to the software and adapt it to the
measurements and data processing one is going to do. For
more information on how to use Simcenter Testlab Impact
Testing [11] or [12] is recommended.

B. Concept of the Optimization Process

The general workflow for optimizing a numerical modal
analysis should begin with a sensitivity analysis. The user
should become familiar with the model and be able to
identify the most important parameters. Once the most
important parameters are known, the data generated by
the sensitivity analysis should be used to train a surrogate
model of the numerical modal analysis. The next step

is to perform optimization on the surrogate model to
obtain a rough estimate of the optimal parameters. To
further improve the numerical modal analysis, a further
optimization can be performed by iterating with an
optimizer directly over the numerical modal analysis. In
this case, however, the bounds of the parameters can
already be tightly constrained. In the next section, these
steps are explained in more detail.

The optimization process is created in Python scripts
that can be run in Marc/Mentat. Marc basically provides
two modules in Python: ”py_mentat” and ”py_post”.
Py_mentat can be used to create models, modify
models, set model parameters, run models, and so
on. While py_post is used to open the t16 result
files and extract result data such as mode shapes and
eigenfrequencies. [13]
Py_mentat offers the possibility to send Marc

commands with the command py_send(), in the
brackets the command can be set as a string, this offers the
possibility to have full control over a Marc/Mentat model.
[13]

The direct minimization algorithm is based on Bayesian
optimization and Gaussian processes as described in
section II-F. The Bayesion optimization function is taken
from the Scikit-Optimized. The function gp_minimize
takes as input the name of the objective function, the initial
parameters x0 and the parameter bounds bnds.

The linear regression model is taken from the module
sklearn.linear_model. The function used in the
specified module is called LinearRegression().[14]

V. REALIZATION

A. Super-NE Rotor Assembly

The Super-NE rotor shown in figure 2 is basically made
up of 4 different components. The rotor shaft is made of
steel and is also the input shaft for the gearbox. Therefore,
a spline is machined on one end of the shaft. The blue
parts are called end rings and are also made of steel. They
are pressed onto the rotor shaft to compress the stacks.
The stacks are the gray parts between the end rings. The
assembly also contains a ball bearing on the opposite side
of the spline.

Fig. 2. The Super-NE rotor assembly.

B. EMA of the Rotor

The geometry of the measurement is created in
Simcenter Testalb. In this case, many more measuring
points are used as it can be seen in the figure 3. In total,



the geometry is defined by 60 nodes distributed over the
outside diameter of the stack, on the end rings and on the
rotor shaft. The sensors are distributed at 45 deg intervals
around the circumference of the stack and the end rings.

Fig. 3. Geometry used for the EMA of the rotor.

As for the stack, the rotor is also suspended, but with
stiffer elastic bands. The setup of the rotor test can be
seen in the figure 4. The geometry points are marked on
the rotor surface and the accelerometers are glued to the
rotor with superglue.

Fig. 4. Set up of the experimental modal analysis of the rotor.

For the test, 4 impact points are selected. Two in radial
direction on the shaft, more precisely on the ends of the
shaft. Another point is chosen in tangential direction on
the stack. This is done by fastening a pipe clamp around
the stack, then the screw of the clap can be hit with a
hammer to get an impact in tangential direction. Another
impact is applied to the end rings in the axial direction.

The mode shapes and eigenfrequencies are then
estimated using the PolyMAX add-in. The result of the
mode shapes can be seen in the figure 5. The mode shapes
are named in this case to distinguish them. Five rotors are
measured to get an averaged result of the eigenfrequencies,
the results of the different samples are shown in the table
I.

Fig. 5. Modes shapes of the rotor EMA.

Sample Nr. f1 / Hz f2 / Hz f3 / Hz f4 / Hz f5 / Hz
1 2019 2520 3157 3562 5391
2 2038 2521 3251 3494 5575
3 2104 2527 3145 3405 5408
4 1936 2614 3211 3495 5446
5 2040 2544 3273 3400 5378

Average 2029 2551 3220 3448 5451

TABLE I
RESULTS AND AVERAGE OF THE ROTOR EMA.

C. Model of the Super-NE Rotor

The simplified model shown in 6 is created under
the following assumptions. This model does not take
into account the contact stiffness between the different
components. All contacts are modeled as glued contacts.
The stacks are also further simplified. First, the magnets
are filled with stack material and the density of the stack
material is changed accordingly. Furthermore, the stack
is modeled as one body instead of five separate stacks.
An orthotropic material law in cylindrical coordinates is
used for the stack material. The model of the stack can
be seen in figure 6 on the right. The idea of this model is
to adjust the stack material parameters to compensate for
the simplifications made.

Fig. 6. Mesh of the simplified Super-NE rotor model.

D. Model Update of the Super-NE Rotor

Since the simplified Super-NE model is a light model,
direct optimization is performed here as described before.
To visualize the effect of the different parameters on the
eigenfrequencies, a sensitivity analysis is performed with
30 Latin hypercube samples. All parameters of the stack
material are analyzed in the sensitivity analysis. The result
is shown in figure 7 The parameters that are optimized are
again the parameters of the stack material, except those
that are similar to steel, more precisely, parameters E3,
G23 and G31 are optimized. It can also be seen in figure
7 that with these three parameters all eigenfrequencies of
interest can be influenced.

Fig. 7. Sensitivity analysis of the stack material of the Super-NE
simplified model.

The Bayesian optimization process is started by feeding
the sensitivity analysis data into the algorithm. The next



30 direct optimization iterations are performed, yielding
the results shown in the table II.

EMA / Hz
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
2029 2551 3220 3448 5451

Initial NMA / Hz
1674 1891 3193 3334 5710
17.5 % 25.9 % 0.8 % 3.3 % 4.8 %

Optimized NMA / Hz
2003 2502 3156 3569 5634
1.3 % 1.9 % 2.0 % 3.5 % 3.4 %

TABLE II
RESULT OF THE MODEL UPDATE OF THE SUPER-NE ROTOR

SIMPLIFIED MODEL.

The final parameters of the Super-NE rotor simplified
model are listed in table III. It becomes visible that the
shear moduli are similar to the one of the complex model.

Stack Material: Value / N/mm2

E1 200000
E2 200000
E3 948

G12 72000
G23 942
G31 808

TABLE III
OPTIMIZED PARAMETER OF THE SUPER-NE ROTOR SIMPLIFIED

MODEL

VI. MODEL UPDATING OF THE K5 ROTOR

As a second component, the K5 rotor will be modeled
and optimized using experimental modal analysis. For
this, a simplified model of this rotor is created with
similar characteristics to the simplified Super-NE rotor.
The experimental modal analysis data is already available,
so only some basic evaluation is performed.

A. Rotor Assembly

The K5 rotor has significant design improvements over
the Super-NE rotor. The assembly of the K5 rotor is shown
in figure 8. The most significant design change is the nut
and shoulder design. In the case of the K5 rotor, instead
of the stacks being compressed by the endrings through a
press fit, the endrings are compressed by a nut on the shaft
and on the other side of the shaft, a shoulder supports the
opposite endring. In this way the compression of the stacks
can be adjusted more precisely by tightening the nut with
a certain torque and compressing the stacks with a certain
force beforehand. Another design change on the K5 rotor
are the endrings. The outer diameter of the endrings has
been increased to nearly match the outer diameter of the
stacks. This is done to better distribute the compression
of the stacks. The stack design remains the same as the
Super-NE, with the addition of one stack compared to the
Super-NE rotor. Another difference from the Super-NE
rotor is that the endrings are made of an aluminum alloy.

Fig. 8. CAD model of the K5 rotor.

B. EMA of the K5 Rotor

As mentioned, the data of the EMA already exists. What
is missing is the evaluation of the data by estimating the
mode shapes and the frequencies. This is again done as
described in the examples before. The results of averaging
the eigenfrequencies are shown in table IV.

Mode Name fn /Hz
Shear 2128

Bending in Phase 2469
Torsion 1 3036

Bending out of Phase 4147

TABLE IV
RESULTS AND AVERAGE OF THE K5 ROTOR EMA.

The modes of the K5 rotor are similar to the ones of
the Super-NE, and can be differentiated by the names in
table IV.

C. Numerical Modal Analysis of the K5 Rotor

The K5 rotor model makes similar simplifications to the
simplified Super-NE rotor model. The mesh is shown in
the figure 9. This model is also designed to be simple,
small, and efficient so that it can be easily implemented
in SMT MASTA. The stack is modeled in the same way
as for the Super-NE model, with one body that combines
all 6 stacks. The contact stiffness is neglected and the
contact areas are modeled as bonded by combining the
nodes of the contact bodies. The nut, which is new to this
design, is also modeled with bonded contacts to the shaft
and the endring. The spline of the rotor shaft is modeled
as a cylinder with equivalent mass.

Fig. 9. Mesh of the K5 rotor model.

As a first attempt, the parameters of the simplified
Super-NE model are selected for the stack material. The
shaft is modeled as steel with a Young’s modulus of
208000 N/mm2. The endrings are modeled as aluminum
with a Young’s modulus of 72000 N/mm2.

The mode shapes of the numerical modal analysis can
be seen in figure 10.



Fig. 10. Mode shapes of the K5 rotor model.

D. Model Updating of the K5 Rotor

Using the parameters of the Super-NE rotor stack
for the simplified model proved to be a very rough
approximation. Therefore, an optimization attempt using
the direct approach is started. In this case, sensitivity
analysis is not necessary because the parameters and the
influence of the parameters are basically the same as for
the Super-NE. The parameters to be adjusted are the stack
material parameters, except for those similar to steel. The
mode shapes used for optimization are listed in the table
V.

EMA NMA
Shear Mode 2,3

Bending in Phase Mode 4,5
Torsion 1 Mode 9

Bending out of Phase Mode 17,18

TABLE V
PAIRING OF THE NUMERICAL MODAL ANALYSIS WITH THE EMA OF

THE K5 ROTOR.

In this case, the optimization is performed by initializing
the optimization with 10 latin hypercube samples
generated directly by the optimization algorithm. Then 20
more Bayesian optimization steps are performed. A plot
of the objective function is shown in figure 11. The plot
shows that the objective function is random for the first 10
iterations, but then the algorithm converges quite quickly.
The peaks in the 20 optimization steps are some attempts
of the algorithm to find a lower minimum, but it becomes
clear that the lowest minimum is found quite early.

Fig. 11. Plot of the objective function for every iteration of the
optimization process.

The results of the optimization process are listed in
the table VI. In this case, the errors are all below 2 %.
The initial numerical modal analysis is computed with the
parameters of the simplified Super-NE model.

Mode 1 Mode 2 Mode 3 Mode 4
EMA 2128 2469 3036 4147

Initial NMA 2080 2318 2722 4053
Error 2.3 % 6.2 % 10.3 % 2.3 %

Optimized NMA 2129 2445 3027 4211
Error 0.0 % 1.0 % 0.3 % 1.5 %

TABLE VI
EIGENFREQUENCIES OF THE MODEL UPDATE OF THE K5 ROTOR

MODEL IN HZ AND THE ERRORS IN %.

The optimized parameters can be found in the table VII.
It can be seen that the parameters change quite a lot, and
it is surprising that parameter G31 decreased quite a lot
where E3 and G23 increased.

Stack Material: Value / N/mm2

E1 200000
E2 200000
E3 1319

G12 72000
G23 2109
G31 291

TABLE VII
OPTIMIZED PARAMETER OF THE K5 ROTOR SIMPLIFIED MODEL.

In conclusion, the Super-NE parameters cannot be used
for the K5 rotor, although they are a good first guess.
This is probably due to the design changes made to the
K5 rotor. The optimization workflow applied to the K5
rotor was very effective and yielded good results.

VII. RESULTS

In conclusion, it can be said that the created workflows
have been successfully implemented on the different
components tested. Starting with the sensitivity analysis
script and workflow, it can be said that it is a very useful
tool and helped a lot to reduce the number of parameters
used for optimisation.

Regarding the optimisation with a surrogate model
using linear regression, it can be concluded that the
implementation for the complex Super-NE model worked



perfectly. The model is trained using existing data from the
sensitivity analysis, which saves a lot of time. In addition,
the linear regression optimisation is useful when the limits
of the sensitivity analysis are too narrow. The surrogate
model is able to extrapolate the frequency data, so wider
limits can be chosen for the optimization if needed.

Concerning the direct optimization workflow, it can be
said that it worked well for the simpler models, but is
not suitable for large simulation models. The efficiency
of the Bayesian optimisation algorithm is good, as not so
many samples are needed to find the global minimum. The
disadvantage of this method is the need to find suitable
bounds. However, looking at the results of the sensitivity
analysis often helps to adjust the bounds to appropriate
ones.

To get a measure of the success of the optimisation
process, the average of the frequency error over
all estimated eigenfrequencies of all components is
calculated. The results are listed in the table VIII. Looking
at the averaged errors, it can be said that all components
are updated successfully, regardless of the optimization
method. In general, a frequency error below 5 % is
acceptable, and fortunately all errors in this experiments
are within this range.

Component Error
Stack 2.9 %

Super-NE Rotor Advanced Model 1.8 %
Super-NE Rotor Simple Model 2.4 %

K5 Rotor 0.7 %
PIT Rotor 1.2 %

Average 1.8 %

TABLE VIII
AVERAGED FREQUENCY ERROR FOR THE CORRESPONDING

COMPONENTS MODEL.

VIII. SUMMARY AND OUTLOOK

In summary, the optimization workflow can save some
time in finding the optimal model parameters, but it is
not always easy to find the appropriate initial values and
bounds. The advantage of the automated process is that
once it is set up, one can run the script and do something
else while the calculations are running. Sometimes setting
up the optimization takes a bit of time and thought, but
in general it takes less time than manually iterating over a
certain component and changing the parameter each time.
Especially when the number of unknown parameters is
high.

It turns out that the optimization algorithm drastically
reduces the errors for each tested component. However,
one should not underestimate the power of manual
model updating for simple models. A sensitivity analysis
combined with manual tuning can be more efficient in
some simple cases than setting up a whole optimization
script where bounds and initial parameters are unknown.
Nevertheless, a combination of some manual tuning to get
the rough bounds and additionally updating the simulation
with one of the suggested optimization methods will lead
to the best results.

The next step will be to implement the optimized
components in MASTA. The MASTA model could then be
tested against a real acceleration measurement. One could
then see if some peaks in the spectrum match better than
before in the MASTA model.

To further improve the MASTA model, other
components should be optimized, such as the stator
or the stator in combination with the housing.
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